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Abstract-Heat transfer from a horizontal fine cylinder by pure forced convection at small Reynolds 
numbers or by pure free convection at small Grashof numbers is analyzed without restriction on 
Prandtl number by the method of joining the circumferential average temperature in the concentric 
layer around the cylinder governed mainly by conduction to that in the wake or plume governed mainly 

by convection. The agreement between analysis and experiment is satisfactory. 

NOMENCLATURE 

radius of the circular wire; 
dimensionless velocity components; 

coefficient of the expansion term in the 
near-field solution; 

acceleration due to gravity; 
Grashof number (= gfi(7” - T,)u3/vZ); 
average heat-transfer coefficient; 
thermal conductivity; 

Nusselt number (= ha/k); 

dimensionless excess pressure; 
Prandtl number; 

dimensionless cylindrical coordinates; 
Reynolds number ( = U,, a/v); 

dimensionless temperature; 
dimensionless velocity components; 
dimensionless coordinates. 

Greek symbols 

B, expansion coefficient; 

4 similarity variable for free convection 
[ = (Gr0,)“4xy-2’5]; 

V. kinematic viscosity; 

53 similarity variable for forced convection 
(= Re1’Zx-“2y); 

P? density; 

@. stream function for forced convection 

(&D/jay = u. ii@/i?X = -0); 

Y’, stream function for free convection 
(e/ay = -u, aylax = Ll). 

*Present address: Technical Research Laboratory of 
Hitachi Shipbuilding and Engineering Co., Ltd., Sakurazima, 
Konohanaku, Osaka, Japan. 

Subscripts 

0.1,2. order of expanded terms; 

J. at the joining point; 

m, at the arithmetic mean temperature 

= W,+ L); 
K’, at the surface of the cylinder; 

ccj, at infinity. 

Superscripts 

circumferential average in the near field; 
* 

circumferential average in the far field. 

1. INTRODUCTION 

HEAT transfer from a circular cylinder by pure forced 
or pure free convection has been widely studied because 
of its engineering importance. As a fundamental situ- 
ation of the problem, the present study is concerned 
with the heat transfer from a horizontal infinite circular 
cylinder by pure forced convection at small Reynolds 
numbers or by pure free convection at small Grashof 
numbers. The convection flow is steady and laminar 
with its orientation or its direction perpendicular to 
the cylinder. Here, the above term “small Reynolds 
number” or “small Grashof number” signifies that the 
thickness of the boundary layer around the cylinder is 
sufficiently large compared with its diameter. 

For the analysis of the present problem with small 
characteristic parameter (Reynolds number or Grashof 
number), the procedure of asymptotic expansion can 

not readily be employed because the energy equation 
for the zeroth-order expansion (the conduction equa- 
tion) has no steady solution maintaining a finite tem- 
perature difference between the cylinder surface and 
infinity. For the case of pure forced convection, 
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however, the heat transfer at small Reynolds numbers 
has been analyzed with the method of matching the 
solutions expanded asymptotically in the two regions 
by Wood [l] and by Hieber and Gebhart [2] with 

the help of the solution for the flow surrounding the 
cylinder. For the case of pure free convection, the 
structure of similarity solutions in the upward plume 
above the cylinder has been investigated in detail by 
Kuiken and ZeCv Rotem [3]. Undertaking a theoretical 
investigation for pure free convection at small Grashof 
numbers, Mahony [4] determined the heat-transfer 
rates from the cylinder with the method of joining 
the temperatures of the two solutions. The correlation 
line of heat transfer which he obtained with joining 
smoothly the temperature of a solution of the con- 
duction equation around the cylinder to the maximum 

temperature of a similarity solution in the plume, at a 
point on the symmetrical axis above the cylinder, 
however, does not agree well with the experimental 

results. 
Similarly, the temperature-field concerned will be 

considered to be divided into the two fields as follows. 

One is “the near field” around the cylinder where 
conduction is dominant in comparison with convection 
and the other is “the far field” at a large distance 
above the cylinder in the plume where convection is 
dominant, for the case of pure free convection. In 

order to attempt to obtain the heat-transfer correlation 
which agrees well with the experimental results at 
small Grashof numbers. the method of joining 
smoothly the circumferential average temperatures of 
the above two fields is chosen from the viewpoint 

of physical grounds, although the temperatures are not 
to coincide mathematically owing to the difference of 
their integral directions. The average temperature 
solution in the near field may include expanded terms. 
The far-field similarity solution is calculated without 
any restriction on Prandtl number to obtain the 
correlation of the Nusselt number with Grashof num- 
ber. For the case of pure forced convection, the heat 
transfer can be similarly analyzed to result in a simple 
expression of the Nusselt number correlated with 
Reynolds number. The obtained correlations of the 

heat transfer in both cases were compared with the 
experimental results with long fine moving wires in air 
enclosed in a large box. 

2. PURE FREE CONVECTION 

Consider the heat transfer by pure free convection 
from an infinite horizontal circular cylinder, of radius 
a, maintained at a uniform temperature T, to a sur- 
rounding infinite body of fluid whose temperature at 
large distances from the cylinder is T, This phenomena 
will be presented in a two-dimensional plane and the 
coordinates system is taken as indicated in Fig. 1. 
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FIG. 1. Coordinates system. 

Let v be the kinematic viscosity of the fluid, Pr its 

Prandtl number, p its density and g the acceleration 
due to gravity. It will be assumed that the three 
quantities v, Pr and g are effectively constant through- 
out the fluid and that the fluid density is uniform 
except as it relates to the buoyancy effect and then 

taken to be a function of temperature only. 
Taking the coordinates, the temperature of the fluid 

and the velocity components rendered non-dimen- 

sional as (ax, aq’), T, + (7”- T,). t and (vu/a, vu/a), 
respectively, we may write the dimensionless equations 
of conservation of momentum, mass and energy as 

au au 
-+--0, 
sx iiy 

0.3 

(2.4) 

Here p is the dimensionless excess pressure and Gr 
the Grashof number, defined by 

Gr = g/?(T” - 7”)a3/v2. 

where b is the coefficient of expansion of the fluid, 

assumed constant throughout the fluid. The boundary 
conditions which the solution of the problem must 
satisfy are 

t = 1, u = v = 0 on r2 = x2+y2 = 1, 

t-0 as i 
(2.5) 

r-+co. 

together with suitable behaviour of the velocity field 
at infinity. 
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The Nusselt number Nu is defined by 

Nu = hafk, 

where h is the circumferential average of heat-transfer 
coefficient and k the thermal conductivity of the fluid. 

This equation will be valid for any flow patterns of 
the far-field solution. If the first term is only used, it 
leads to the solution of the conduction equation, 

Now, consider the near and far fields around the 
cylinder separately and then examine to join their 
solutions. 

(i) The near field 
A near-field solution can be given only with mass 

and energy equations since conduction is dominant 
over convection. In order to obtain the circumferential 
average temperature, equations (2.3) and (2.4) are 
expressed in the cylindrical coordinates form as follows 

WC,) ace --+jg=o, 
dr 

(2.3) 

at C, at 1 
Crm+ras=Pr ,,z+--+lz , (2.4) 

( 

& 1 & 1 8% 

Y ar r a0 > 
where the velocity components are expressed as 

(vc,/a, vc&). 

Equation (2.4)% integrated from zero to 27t with respect 
to 0, using equation (2.3)‘. 

J+‘l(~)-!? ,!I! 
dr r - i% dr ’ ( ) 

(2.6) 

where 

.f=; “fd0 
I 0 

means a circumferential average. Further, integration 
of equation (2.6) from 1 to I with respect to r with 
the boundary condition (2.5) yields 

Pr(&-t)-rc+Nu I - 
dr ’ 

(2.7) 

where Nu = -(dl/dr),=, from its definition. Since 
equations (2.3)‘, (2.4)’ and (2.5) give the following 
relation at the cylinder surface (r = l), 

~=~(~)=$(r~)=O, (2.8) 

the 1.h.s. of equation (2.7) may be expanded in the term 
of (r - 1) to yield, 

r$= -Nu+D.(r-1)3+D1.(r-l)4+.... (2.9) 

If the terms up to the second in the r.h.s. of equation 
(2.9) are included, equation (2.9) is expressed in the 
integral form of 

I = 1 -Nulnr+D 
s 

1’i(r-1)3dr. (2.10) 

7 = l-Nulnr. (2.11) 

The values of Nu and D in equations (2.10) and (2.11) 
must be determined with the conditions obtained in 
the far field. 

(ii) Thefarfield 
Even in the range of small Grashof numbers, the 

upward plume equivalent to the usual boundary layer 
will exist at a sufficiently large distance above the 
cylinder since the Grashof number based on its distance 
becomes large. It is thus considered that the governing 
equations for the far field are compatible with the 
existence of the similarity solution. In order to obtain 
theseries ofsimilarity solutions in the plume, a solution 
of the fundamental equations must be attempted by 
expanding the stream function for free convection Y, 
the temperature t and the excess pressure p in the 
power series of J’- 615(~< 1). 

Y = y3qno. cpo(q)+y-6’5~l~ cpl($ 

+(y-6’5)27E,.(P*(~)+...}r (2.12) 

t =y-3’5{00 .oo(Y/)+y-6'501.01(~) 

+~-6'5)202.0~(~)+...}, (2.13) 

P = Y-4’51ro.Yo(yI)+Y-6’5rl.YI(?) 

+(Y-~‘~)*~~.Y~(v)+...), (2.14) 

where q is the similarity variable for free convection 
given by q = 2,. xy- *j5. 

By considering that the velocity and temperature in 
the plume are symmetric with respect to the y-axis 
and that the energy passing through an arbitrary 
cross-section of the plume keeps a constant value given 
by the heat flux released from the surface of the 
cylinder, the boundary conditions will be written as 
follows 

x _ o_ ay a9 at 
-z-c 

. dy = ax* ax 
0, Y=O; 

(2.15) 

Substituting the above expansions (2.12), (2.13) and 
(2.14) into equations (2.1), (2.2), (2.4) and (2.15) and 
equating the coefficients of the like powers of ye6j5, 
we obtain a set of the ordinary differential equations. 
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Thus, the equations and boundary conditions govern- where the prime denotes the derivatives with respect 

ing the zeroth-order approximation become to ?I. Z, = (GrO,) Ii4 and r-c0 = (GrOo)‘/” are evaluated 

-$+%Jcpg +J-(cpb)2 = cp;‘+oo, (2’16) 
so as to have Gr eliminated from equations (2.16) and 

(2.17),and@, must satisfy the above integral condition. 

$QoHo = -;ob. (2.17) 
The momentum equation in the x-direction need not 
be considered explicitly because it is only to determine 

;10 with the solutions of cpO and (IO. To the boundary 
condition (2.18). for the convenience of calculation, the 

r/-co: &-+O; 
(2.18) 

condition f),(O) = I was added. 

Here, simultaneous non-linear equations (2.16) and 

\ 
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(2.17) subject to the boundary condition (2.18) are 
solved numerically by the Runge-Kutta-Gill method. 

The finally convergent solution of (PL was sought by 
means of varying an initial value of cpb(O) so that the 

corresponding solution might satisfy the boundary 

conditions as t7 + ic. The vertical velocity component 

& and the temperature B. are shown in Fig. 2(a) for 
Pr = 0.1, 0.72 and 10. The vertical velocity to this 

order approximation tends to infinity like ~.r’~. but it 
is possible that the tlow may actually be turbulent 

at large distances. 
The circumferential average temperature in the far 

field is defined and calculated as follows 

(iii) Joining 0f’twoJields 
The solutions in the two fields have an as yet 

where r and J: must be regarded as the same value. 

? 

(a) 

undetermined value of the Nusselt number Nu in 
common. They must be connected in a suitable way 

9: 00 d ? 
‘----_____ 

-_ 

log Pr 

(b) 
FIG. 2. Calculated results of u-velocity cpb, temperature fIO and E for pure 

free convection. 
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to give the heat-transfer coefficient. It appears too 
difficult to match the two solutions exactly. Hence, 
we take a crude form of matching that the circum- 
ferential average temperatures in the two fields may 
be joined up smoothly at a certain distance r = rj( >> 1) 
on the y-axis, where rj I yj. The two kinds of the 
integration in the exact solution become nearly equal 
when the width of the plume becomes small compared 
with the distance from the cylinder. The necessary and 
sufficient conditions that equations (2.10) and (2.19) 
should join up smoothly at the point rj are 

f = f, 
di df d2f d2E 
&=G’ G=dr”’ 

The heat fluxes in the two fields are to be joined up 
in consequence of the heat integration in the boundary 
condition (2.15). From the above three equations, the 
three constants rj, D and Nu are determined by use 
of the approximation that r + r - 1(x l), as follows. 

rj = CA(NuGr)-“3, CA = (#A0)si6, (2.20) 

D = C, & (NuGrf2, c, = g4,(g&4,)-“2, (2.21) 

1 
- = +lnE-fln(NuGr), 
Nil 

E E Ci exp(g - Cj C,). (2.22) 

The calculated results and the values of E are shown 
against log& in Fig. 2(b) (for the case of the extreme 
Prandtl numbers, see Appendix). The values of E show 
slightly a minimum in the vicinity of Pr = 0.72. The 
approximation to E can now be written simply as 

E = 3*1(Pr+9.4)“2Pr-2, (2.23) 

being presented by the solid line in the figure. This 
approximation is applicable in the whole range of Pr 
including the extreme cases of Pr = 0, cx~, although it 
has small discrepancy near Pr = 50. 

The joining distance rj may be regarded to corre- 
spond to the thickness of a concentric cylindrical film 
of the Langmuir concept and will give a restriction on 
the range of Grashof number for the present result. If 
the upward laminar flow is presumed to be critical at 
rcrit = (RecritNu-2iSGr-2’5)5’6 where the Reynolds 
number based on r becomes equal to the critical one 
Re,,i!( >> l), the following relation is obtained from 
equation (2.20). 

Therefore, the far-field solution will be valid for the 
above limited region which is slightly different from 
the value given by Mahony. Although the absolute 
value ofthejoiningdist~ce rj increases with decreasing 
the Grashof number, the ratio of this distance to the 

width of the plume at the distance is invariable because 
they are the similar functions of Gr. 

Similarly, the necessary and sufficient conditions for 
joining equations (2.11) and (2.19) are 

df df 
i=f, G=&’ 

Then, the two unknowns are approximately obtained 
as follows 

rj = C,~(N~Gr}-1’3. c; 3 ($4,)5’6. (2.24) 

Al = ilnE’--$ln(NuGr). E’ z ($~&e)~‘~. (2.25) 

Although equation (2.25) is in the similar form as 
equation (2.22), the former gives slightly smaller Nusselt 
number than the latter because of the relation 
E’ 2 t-17 x E. The difference is only about 2 per cent 
for Nu at Gr = 10-j and decreases rapidly with de- 
creasing Grashof number. It is found that equation 
(2.22) is in better agreement with the experiments by 
Collis and Williams [S] than equation (2.25) within 
the limits of Fig. 3. 

(iv) Comparison with experiments 
The result of equation (2.22) with (2.23) is compared 

with the experimental correlations proposed by Collis 
and Williams [5] and by Tsubouchi, Sato and 
Nagakura [6] in Fig. 3. Although equation (2.22) is 
likely to give the slightly different slope from the 

log Gr 

FIG. 3. Comparison of equation (2.22) and pro- 
posed correlations for pure free convection. 
-, equation (2.22) for Pr = 0.72; ----, Collis 
and Williams, 2Nu, = 1/{@88 -043 log(8Gr,)), 
Io-‘o < 8Gr p < IO-’ for air; --, Tsubouchi, 
Sato and Nagakura, Nu, = 0466(PrGr,)“‘5 
lo-’ < 8Gr, < t0-2 for Pr = 0.72; ----m-, 

Mahony. for Pr = I. 
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-7 -6 -5 

log Gr, 

FIG. 4. Experimental results for pure free convection. 
a, The authors, 20000 < l/a $ 25 000; ----, Collis and 
Williams (for legend see Fig. 3). (-. equation (2.22) 

for Pr = 0.72.) 

correlation of Collis and Williams, the curves given by 
the three relations are considerably closely positioned 
and especially the agreement between equation (2.22) 
and the correlation of Collis and Williams is remark- 
ably good. It is expected that the slope of equation 

(2.22) becomes more appropriate at very small Grashof 
numbers. The result calculated with the method pro- 

posed by Mahony gives the parallel line to equation 
(2.22) as shown in Fig. 3 because of the same depen- 
dency of Gr on Nu as in equation (2.22). (EMvlahony = 

60xEforPr=l). 
The experimental result made by the authors (in 

detail, see Part II) with wires of length/radius ratio 
of 20 000 to 25 000 placed in air is plotted in Fig. 4. 

The agreement among these relations is also extra- 
ordinarily good within the experimental scattering and 

will reveal that the experiment by Collis and Williams 
is also reliable in the range of Gr given in the legend 
of Fig. 3. 

The comparison of the present result with experi- 

ments by Gebhart and Pera [8] is shown in Fig. 5 for 
Pr = 6.3 and 63 and for the relatively large values of Cr. 

At Pr = 50. the value of l/Nu given by equation (2.22) 
with the computed value of E is almost 0.1 larger 
than that by e@ation (2.22) with (2.23). Therefore, it 

may be inferable that the agreement between equation 
(2.22) with the computed value of E and the experi- 
ments becomes satisfactory even at Pr = 63. 

The validity of equation (2.22) requires ‘; >> I and 
this produces a possible limitation of the present result. 
Eliminating Nu from equation (2.20) by use of equations 

(2.22) and (2.23). we can express rj as a monotonic 
function ofPr’(Pr+ 94-“‘Gr, and obtain the criterion 

Prz(Pr+94~“2Gr << 1. 

By virtue of good agreement shown in Fig. 3 in the 
range of Gr ,< lo- 3, the above criterion can be rewritten 

in a further simplified form as 

Pr’Gr 6 10e3, (2.26) 

which implies rj 2 18. Even at Pr2Gr = lo- 3, the differ- 
ence from the experimental correlation of Collis and 

Williams is at most 2 per cent for Nu. It is noted that 

the extended curve of equation (2.22) in Fig. 3 for 
Pr = 0.72 passes through the point (1ogGr = 0, 
l/Nu = l), takes the maximum value of Gr at the point 

(1ogGr = 0.368, l/Nu = 0,333) and then goes back to 
the minus infinity of log Gr along the line of l/Nu = 0 

as an asymptote (log Gr + - x, l/N~r = 0). Therefore, 
it seems that the criterion of the applicable range of 
Gr can be extended up to Gr = 10e2 or 10-l (the 

log ( Prtr,) 

FIG. 5. Comparison of equation (2.22) with (2.23) and experi- 
mental result at l/a = 32000 by Gebhart and Pera for pure 

free convection. ----, :>, Pr = 6.3; -, 0, Pr = 63. 
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corresponding joining distance rj = 8.3 or 3.9, respeo 
tively) if the error in the Nusselt number is more 
allowable, because the curve of equation (2.22) is 
positioned over that of the experimental correlation 
of Collis and Williams at least near Gr = 10m3 in 
the figure. 

3. PURE FORCED CONVECTION 

Next, we consider the steady uniform flow in the 
x-axis direction past a horizontal circular wire. De- 
noting the coordinates, velocity components and tem- 
perature as (ax,ay), (U,,u, U,u) and T, +(T,-T,)t 
respectively, we obtain the dimensionless fundamental 
equations governed by Reynolds number Re, 

(3.1) 

(3.2) 

au+av=, 
ax ay ’ (3.3) 

at at I a3 a2t 
‘%+“&=PrRe s+@ ’ -( > (3.4) 

A perturbation procedure in terms of the small par- 
ameter similar to that in the foregoing section can be 
taken for small values of Reynolds number. 

(i) The near field 
The solutions of the governing equations in the near 

field can be also obtained in the same form as for 
the case of pure free convection although they have 
different units of the non-dimensionalization, and then 
equations (2.10) and (2.11) can be adopted for these 
solutions. 

(ii) Thefarjeld 
The fact that the width of the wake at a large 

distance from the cylinder is sufficiently small com- 
pared with the distance allows the similarity solution 
for the far field which may hold even at small Reynolds 
numbers. Then, @, t and p will be expanded in the 
power series of x -1/2(<< 1) with a similarity variable 
5 = Z,X-‘~‘~ as 

@ = x”2{Fo.fo(5)+x-1’2F~.f1(5) 

f (x-1’2)2F2. f&3 +. . .}, (3.5) 

t = x-1’2{Go.go(~)+x-“2G,.g1(~) 

+(x -1’2)2G2. g2(t) +. . .}, (3.6) 

p = x_‘{H,.h,(5)+x_“2H,.h,(T) 

+ (x-“2)2&. h2(5) + . . .}, (3.7) 

where @ is the stream function for the forced convection 
case. The boundary conditions are transformed to 

y=o: ~@_~2~_at=0 
ax ay2 ay ’ 

ao, 
y+co: --+l, 

ay 
t-to; 

where the last equation is derived from the drag 
relation of a cylinder in a uniform flow. 

In the similar manner to the case of pure free 
convection, the governing equations and boundary 
conditions for the zeroth-order approximation are 

fdsodt = 
Nu 1 

=PrReO.SG 0 

(3.9) 

(3.10) 

(3.11) 

where Zs = Re’12 and F. = Re-“2, whereas the value 
of Go need not be determined. Because the integral of 
the drag relation is the order of magnitude of x1/‘, 
the right hand of the equation must be equal to zero, 
and the drag condition will take part in to the higher- 
order approximations. The solutions of equations (3.9) 
and (3.10) become 

h = 5, (= 401, (3.12) 

go = Gooocxp(-&52), (= GOOOX~), (3.13) 

where Gooo = go(O) = (J~)Pr-1’2Re-“ZNuG~‘. These 
solutions illustrated in Fig. 6 show that there exist a 
thin thermal wake in the uniform flow. 

Consequently, the circumferential average tempera- 
ture is obtained as 

f~l mtdy=?!?r-l, s nr o PrRe 
(3.14) 

(iii) Joining of twofields 
Equations (2.10) and (3.14) are to be joined smoothly 

at r = rj with the approximation that r + r- l( >> l), 
in the same manner as equations (2.11) and (2.19) for 
the case of pure free convection. From the three 
relations equating the average temperatures and their 
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5- 

0 I 

FIG. 6. Calculated results of u-velocity & and 
temperature x0 for pure forced convection. 

derivatives, the three unknowns ‘;, D and Nu are 
obtained as follows 

rj = +(PrRe)- ‘, (3.15) 

D = &(PrRe)3, (3.16) 

1 
- = $ + ln$ - ln(PrRe), 
NU 

(3.17) 

where 3 + In($) - 0.955. When equations (2.11) and 

(3.14) are joined with the two relations, the following 
results are obtained. 

rj = (PrRe)-‘. (3.18) 

& = 1 -ln(PrRe). (3.19) 

The value of l/Nu given by equation (3.19) is only 
about 1.5 per cent larger than that by equation (3.17) 
at PrRe = 10-l and the difference of these values 
decreases rapidly with Re. Equation (3.17) will. how- 

ever, give certainly a better approximation at very 
small Reynolds numbers. If we take (r - 1)3 + r3 - 3r2 

instead of (r- 1)3 + r3, the term of &PrRe will be 
added to the r.h.s. of equation (3.17) to give the slope- 
variation more resemblant to that of Hieber and 
Gebhart [2] in the narrow range near PrRe = lo-‘. 

However, equation (3.19) is simpler and in slightly 
better agreement with the experiments by Collis and 
Williams [7] for Reynolds numbers in the range of 
Fig. 7 than equation (3.17). 

(iv) Comparison with experiments 

The simple relation of equation (3.19) is similar to 
the result of Cole and Roshko [2] with Oseen’s 
approximation and agrees well with the correlation 

proposed by Collis and Williams [7] as shown in 
Fig. 7, although the complicated relation analyzed in 
detail by Hieber and Gebhart [2] is in better agree- 

ment with the current result. 
The experimental result made by the authors with 

wires of the aspect ratio of length/radius of 20000 to 
25000 is plotted in Fig. 8 (in detail, see Part II), and 
compared with the above theory. It is seen from the 
figure that the agreement among the three is consider- 

ably good. The effects of the aspect ratio and the 
temperature loading are sufficiently negligible within 
the measurement errors of the present experiments, 

-10 

- -Is 
-5 

\ 

I I I I 2 
-4 -3 -e -I 0 

log Re 

FIG. 7. Comparison of equation (3.19) and proposed 
correlations for pure forced convection. -, equa- 
tion (3.19) for Pr = 0.72; ----, Collis and Williams. 
2A$,(7JT,)-@” = 1/{1.18- l~lOlog(2Re,)}. 0.5 > 
2Re,(> 0.01) for air, assuming T,/T, = 1; --. 
Hieber and Gebhart. 2Nu = (2/cr)(l - u/a’): x = 
ln(4/yPrRe); a = 1.38 for Pr = 0.7; ----, Cole 
and Roshko. l/Nu = ln(4/PrRe)-y, for Pr = 0.72. 

\ \ 1 1 \ \ \ 
FIG. 8. Experimental results for pure forced con- 
vection. 0, The authors, 20000 < l/u < 25000; 
----, Collis and Williams (for legend see Fig. 7). 

(-----. equation (3.19) for Pr = 0.72.) 
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4. CONCLUSION 

395 

? 
- 5” 

e 0 

0 

0 
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FIG. 9. Comparison of equation (3.19) and experimental 
result at l/a = 32000 by Gebhart and Pera for pure 

forced convection. I>, Pr = 6.3; 0, Pr = 63. 

The deviations of the experimental points from the 
mean value, which are grouped at constant Reynolds 
number, excluding the scattering of particular points, 
are found to be mainly caused by the measurement 
error of the diameter of the fine wire because they 
consist almost of four groups as seen commonly in 
Figs. 4and 8, that is,000064cm dia (Gr, = 1.30 x lo-‘; 
Re,,, = 7.6 x 10-3), 000088cm dia (Gr, = 3.2 x 10e7; 
Re, = 9.3 x 10m3), 0.00164cm dia (Gr, = 0.91 and 
151 x 10-6; Re, = 2.05 x 10m2) and 0.00262cm dia 
(Gr, = 4.8 and 8.0 x 10m6; Re,,, = 3.10 x lo-‘). More- 
over, the deviated amounts of Nusselt number for each 
diameter are roughly equal for both cases of pure free 
convection and pure forced convection. This may be 
concluded from the fact that Nusselt numbers given 
by equations (2.22) and (3.19) are of the similar function 
of the diameter. 

Comparison with the experiments by Gebhart and 
Pera [8] for Pr = 6.3 and 63 is shown in Fig. 9, 
although the Reynolds numbers of their results exceed 
the applicable limit of equation (3.19). Nevertheless, 
it is evident from the figure that equation (3.19) 
appears to be valid approximately up to such higher 
Prandtl numbers. 

In the same manner as the case of pure free con- 
vection, the applicable range of equation (3.19) can be 
derived from the restriction rj >> 1 and the comparison 
with the experimental results in Fig. 7 to be expressed as 

PrRe < 10-r. (3.20) 

which implies rj > 10. The difference between the 
present result and the correlation of Collis and Williams 
are about 8 and 3 per cent at PrRe = 10-l and lo-’ 
respectively, although they decrease rapidly with the 

By analyzing the heat-transfer fields from a circular 
wire by pure free convection at small Grashof numbers 
or pure forced convection at small Reynolds numbers 
and by using the method of joining the circumferential 
average temperatures, the correlations between Nusselt 
number and Grashof number or Reynolds number are 
obtained to bein good agreement with the experimental 
results. The derived correlations of heat transfer are 

1 
- = 3 In E - 3 ln(NuGr), 
NM 

E = 3*1(Pr+9~4)1’2Pr-2. Pr2Gr < 10-3; 

& = 1 - ln(PrRe), PrRe < lo-‘, 

for cases of pure free convection and pure forced 
convection, respectively. The applicable range of Pr 

for the present results is not to be restricted, excluding 
for the case of rarefied gases. 

1. 

2. 

3. 

4. 

5. 

6. 

I. 

8. 
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APPENDIX 

When the coefficients Z, and no are taken to be 
Z, = (#‘r2GrOo)“4 and no = (sg%‘r-ZGr0,,)1’4 as Mahony 
[4] does, equations (2.16) (2.17) and (2.18) become, 

cpb, - 3 porn cpg, = 5 @am - 3 Prrp& , 0) 

ebm = &Ml (PO” 3 (2a) 

QJm=O: (Pom=(P;;m=O, corn = 1; 
1 

The numerical results of the above equations are shown in 
Fig. 10 for Pr = 0.01 and 1000. 

It may be estimated from the calculated results that the 
term Pm&, in equation (la) could be omitted in the whole 
range of ‘lo,,, as Pr + 0. Therefore, at the limit of Pr = 0, 
equatrons (la) and (2a) may be solved wrthout the term of decrease of PrRe. 
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FIG. 10. Distributions of u-velocity cp&,, and temperature &,, at extreme 
Prandtl numbers for pure free convection. 

Pr&,, subject to the boundary conditions 

Vom = 0: (Porn = 0, Ha, = 1; 

qorn + co : cpb, + 0. 
(4a) 

The numerical results calculated with the Runge-Kutta-Gill 
method give 

&JO) = 2.187,) 

9bm Qo, dqom = 1.035, I 
( (54 

s m 

B,,,dtfom = 1.194. 
II J 

In this calculation, the value of cp&, is discontinuous at 
~a,,, = 0. Here, if cpb, near tfs,,, = 0 can be given by 

cpb,=(J5) l+aitf;;a+$(?;:)Z+... 
i I 

, (6a) 

the exact values of cpb, near qo,,, = 0 will be obtained by 
evaluating the parameters a,. a2. as it joins smoothly 
to the computed values of cp&,,. The exact solution is also 
shown in Fig. 10. However, at the limit of Pr = 0, the value 
of E can be approximately derived only from the numerical 
integration as follows 

E = 9,96Pr-‘. (7a) 

At extremely large Prandtl numbers, the wake width of 
the velocity (IBM becomes large compared with that of tem- 
perature f!Io,,, as shown in Fig. 10. Then, if q,,,,, = qomo is 
the position where B,,,,, becomes almost zero, the approxi- 
mation 9am = &JO). qorn may be assumed in the range of 

0 < Vom < rlomo. Equation (2a) is then solved as follows 

00, = exr-+_cpb,(0).~~~,i. (84 

And also equation(la) is integrated from zero to qo,,,( > no,,,,,), 

s ‘lam 

4 (9&Y dqom - 3&k ‘IUrn cPbn horn 
0 s 0 

5 J7t -cpb,(O) -I’* 
zp 

2 i 1 2 
-3Pr[q&]p”. (9a) 

With the relations of qo,,, = Pr5’8c(qo,,,o = Pr5’8[o) and 
I& = Pr -“4u(9&,,(0) = Pr-1’400), the above equation and 
its boundary conditions may be reduced to 

4~~a’d[-3rr~~ ud[=- ~ ‘f”(-lo)“‘-3d, (lOa) 

i=o: 
(1Ia) 

[+c: a-+0. J 
which is of an initial-value problem with respect to uo. 
The numerical result of u is shown in Fig. 10. 

u. = - 1,652. (12a) 

Consequently, at extremely large Prandtl numbers, with the 
approximation 

.i 

V, m 

9bm@o,dvom = 9&n(O) 
0 I 

00, drlon > 
0 

the following result is obtained. 

E = 3.10Pr-3’2 (13a) 

The approximation (2.23) is determined so as to satisfy these 
extreme cases strictly besides its behavior around Pr = 1. 


